Abstract

This paper presents the results of using a practical flowcharts (PFs) approach to assist in educating the novices the assessment of control risk. The main research questions are: (1) how can the PFs be developed to help students and novice auditors assessing the control risk? And (2) to what extent is using PFs effective as a tool to improve the education of assessing the control risk? To answer these questions, adequate field work and experiment were performed. The conceptual model is successfully designed consisting of eleven submodels and ten PFs. It is believed that the conceptual model provides a vital contribution to the auditing literature and the application of it constitutes a new education method of auditing. From the validation process, it may be concluded that using a PFs approach is an effective tool to improve the education of assessing the control risk, i.e., the learning performance of students significantly improved via the PFs assignment.

Keywords: Control Risk, Practical Flowcharts Approach, Auditors, Education

1. INTRODUCTION AND BACKGROUND INFORMATION

The auditor’s assessment of acceptable audit risk is a key element in the auditing process. Control risk is one component of the audit risk model. The composition of a control risk assessment is a difficult task which has to be learned over the years. Experience is a good teacher in this respect. So, education guided by experience may be expected to be fruitful. Standard unqualified audit report loses some credibility when it is combined with an adverse report of entity-level internal controls over financial reporting as alleged by some users [2]. Furthermore, the firms with material weaknesses of internal control under SOX section 404 are more likely to receive going concern opinion [20]. Management in most companies is

©copyright by Mohamed A. Wahdan
required to design and maintain an effective internal control system and to make a report on the effectiveness of the internal control over financial reporting at the end of year. Moreover, auditors in a public company are required to evaluate and attest to the management’s report on the effectiveness of the internal control over financial reporting. Since 2004, larger public companies have been required by the SEC to annually obtain an auditor’s report on internal controls over financial reporting [1] [18] [26] [31]. So, an auditor should be skilled and trained in assessing the control risk.

In practice, the assessment of control risk in not based on objective rules or criteria but on professional judgment and experience. Inexperienced auditors have difficulties in making this assessment effectively [16]. Since company managers and auditors depend on the personal judgements approach during the stage of evaluating the internal controls, this may lead to different company managers and auditors reaching different decisions on the effectiveness of internal controls over financial reporting, depending on, among others, their experience and expertise [9] [28] [35]. Such an approach may be ineffective and may lead to different auditors coming to different decisions, developing a personal bias, increasing/decreasing audit scope, and/or giving misleading judgements [32].

This paper aims at (1) developing practical flowcharts (abbreviated as PFs) to facilitate (i) training by professors and experienced auditors in assessing the control risk and (ii) the learning process of students and novice auditors in assessing the control risk, and (2) investigating whether PFs approach is an effective tool to improve the education of assessing the control risk. Of course, the knowledge in the PFs (that are applicable in practice) should be in accordance with ISA 330, ISA 400, COSO, and with common practice. The training materials should focus on the audit assessments and relevant procedures that help in assessing the control risk. Two main research questions examined in this paper are: (1) how can the PFs be developed to help students and novice auditors assess the control risk? and (2) to what extent is using PFs effective as a tool to improve the education of assessing the control risk?

Groomer and Heintz (1999) [14] were the first to propose the use of flowcharts in teaching students many types of the audit reports and the formulation of the auditor’s report. However, they based their course materials only on GAAS and ignored the ISA and also the common practice. They focused on the changes in some Statements of Auditing Standards (SAS No. 79 and SAS No. 82) that deal with the reporting issues. Then, Wahdan and Van den Herik (2011) [34] use a practical flowcharts approach to educate youngsters in the formulation of the auditor’s opinion. Since the auditing standards provide only guidelines to apply the standards in practice, it is believed that the knowledge required to build adequate PFs should be acquired not only from GAAS and ISA, but also from the literature as well as from
experienced auditors (who know how the auditing standards can be applied in practice) through a questionnaire and interviews. The PFs developed in this paper have their origins in both, i.e., theoretical and practical settings. Yet, the goal is to use them for teaching purposes. This paper focuses on both the education of students to a qualified level the assessment of the control risk and the design of the PFs that will help the education process in many ways [34]. Below, it is mentioned six of them.

1. PFs will help reduce the time required for students and novice auditors to acquire the experiences needed to assess the control risk.
2. PFs will support the training of students and novice auditors [4]. It will provide them with structured knowledge on the assessment of control risk.
3. PFs will improve the education in such a way that the control risk complies with the ISA, COSO requirements and the practical auditing settings (which differ from country to country).
4. PFs will properly encode and arrange all the knowledge associated with the control risk; it organises personal judgements and improves decision consensus as well as audit quality.
5. PFs can be considered as a foundation to design software such as knowledge-based system to help students and novice auditors assess the control risk and to support the experienced auditors as a second opinion [32].
6. PFs can be considered as an efficient technique being more readily and understandable than other techniques, such as textbooks, and tabular presentation [14].
7. PFs can provide with the requirements of an effective system of internal control and may enable management to eliminate ineffective, redundant or inefficient controls [8].

To assess the control risk, the auditors should obtain an appropriate audit evidence to be able to draw reasonable conclusions on which an assessment is based. Audit evidence has been obtained from tests of controls, substantive procedures or an appropriate mix of them [17]. According to Arens, et al. (2014) [1] and Wahdan (2006) [32], there are two audit approaches: (1) the control approach: the auditors focus on the examination of the internal controls to reduce the amount of substantive tests they perform and (2) the substantive approach: the auditors do not take into account the internal controls and focus their analysis directly on the amounts represented in the financial statements.

The conceptual model of PFs focuses on the assessment of control risk, which seeks to determine internal controls’ reliability. To assess the effectiveness of the internal controls for planning audit evidence, auditors need to perform eleven activities: (1) understanding internal controls, (2) evaluating the management integrity, (3) examining documents and records, (4) evaluating control environment, (5) reviewing risk assessment, (6) investigation control procedures, (7) reviewing information and communication, (8) walking-through of
significant accounts, (9) performing tests of controls, (10) monitoring and (11) assessing the control risk [1] [8]. To assess the control risk, the results of all above activities should be collected in advance to assess the control risk. The full model consists of eleven submodels that directly lead to the structure of PFs (as presented in section 3).

The outline of the paper is as follows. Section 2 deals with the research methodology. Section 3 presents the conceptual model to design PFs. Section 4 provides the results of an empirical study carried out within one state university in Egypt. Section 5 provides the main conclusion, contribution and limitations as well as points to future work.

2. THE RESEARCH METHODOLOGY
To achieve the research goal, a research methodology consisting of six phases was developed: (1) reviewing the literature, (2) designing a questionnaire, (3) validating the acquired knowledge, (4) designing the PFs, (5) revision of the PFs, and (6) applying and testing the PFs in our auditing education at Menofia University in Egypt. A sample of 34 experienced auditors in seventeen audit firms in Egypt participated in the survey (note: several international audit firms are included and three auditors are from the Central Auditing Organization in Egypt). They cooperated in exploring the auditing tasks to a large extent, in so far as they are required to assess the control risk. Below the six phases are described in more details.

(1) A thorough literature review was performed for acquiring knowledge to assess the control risk.
(2) The questionnaire coupled with in-depth interviews was used to elicit the knowledge from 34 experienced auditors in audit firms; the required knowledge focused on how the auditor performs the task of assessing the control risk in practice. In order to acquire the audit assessments needed to assess the control risk and to answer the first research question. The questionnaire consisted mainly of questions requiring a response on a five-point Likert-scale (always, often, sometimes, rarely, never). The revised questionnaire was divided into 11 parts (based upon preliminary interviews), each covering one submodel of the proposed flowcharts. Furthermore, when performing structured interviews, the questionnaire was sent to auditors before the interviews. The 11 main domains of questions that cover the procedures required to assess the control risk are presented in PFs (most of the detailed questions and procedures, which have a high weighted Means are presented in PFs).
(3) The acquired knowledge was validated by letting the auditors review the results of the knowledge-acquisition process. Disagreements among auditors were solved. The researcher chose a sample of experienced auditors to decrease the disagreements among the auditor’s points of view and interviewed them individually. Then, if there was still any disagreement, the leading expert made a final decision. For example, the sequence of questions to evaluate
the control procedures. Some auditors preferred to use weights for the control procedures such as separation of duties is more important than safeguarding of assets. The flowcharts are modified to reflect the auditors’ points of view. Moreover, it is noted that a high risk cannot be reached by simply having one ‘no’ answer out of many questions asked.

4) PFs were constructed based upon the knowledge collected and elicited in the three phases above.

5) Revision of the PFs was carried out by the auditors (academic and practitioners) to check the validation of the PFs as a tool for assessing the control risk.

6) Based upon the results of the revision and validation process in step five, PFs were enhanced. Subsequently, the PFs were tested in the auditing classes using ten test cases. 64 students from Menofia University in Egypt participated. Some feedback information was collected from auditing professors and students about the developed PFs. Finally, findings, conclusions, and suggestions for future research were established.

3. THE CONCEPTUAL MODEL FOR PFS

The conceptual model of using PFs is illustrated in Figure 1. The main submodel of the assessing control risk is considered as the output of other ten submodels. The other submodels are (1) understanding internal control, (2) evaluating the management integrity, (3) examining documents and records, (4) evaluating control environment, (5) reviewing risk assessment, (6) investigating control procedures, (7) reviewing information and communications, (8) walking-through of significant accounts, (9) performing tests of controls and (10) monitoring. These submodels represent the stages of assessing control risk that cope with the approach applied by the Big-4 audit firms.

3.1 Submodel of Assessing Control Risk

©copyright by Mohamed A. Wahdan
The purpose of this submodel is to structure the process of examining internal controls and assessing the control risk (CR), which seeks to determine reliability of internal controls and the amount of audit evidence required to support the assessment of control risk. To assess the effectiveness of the internal controls for planning audit evidence, auditors need to understand the key internal controls and assess the control risk. It is common practice that if the auditors rely on the internal controls, they will reduce the amount of substantive tests, which they have to execute [1]. A common approach used by auditors, to determine the reliability of the internal controls, consists of three stages: (1) obtaining an understanding of the internal controls at a detailed level, (2) assessing the control risk and identifying the possibility of reducing it, and (3) testing the effectiveness of the internal controls. An auditor may not conclude that the control risk is low before completing all these three stages [1] [15] [25] [33].

To complete the test of evaluating internal controls, the main submodel of assessing control risk distinguishes ten submodels (see Figure 2). Figure 2 illustrates the steps required to evaluate the effectiveness of internal controls and assess the control risk. Steps in Figure 1 are turned into Figure 2, but in particular sequence according to auditors’ points of view to firstly understand the internal controls, then to assess the control risk, and finally to test the possibility of reducing the control risk. The arrows in Figure 2 indicate that the output from one of the submodels is used as input for the other. For example, the output of the submodel of understanding internal controls forms the input of the following submodels: investigating management integrity, examining documents and records, evaluating control environment, reviewing risk assessment, and investigating control procedures. The control risk model assesses the proper control risk after collecting the outputs from all submodels (see figure 2). The auditor should decide which level of assessed control risk should be used. If the auditor identifies the assessed level of control risk as the maximum (internal control becomes less effective [21], the conclusion should be documented. However, if it is below the maximum, the bases and reasons of that conclusion should be documented [1] [3] [15] [21].
3.2. The Submodel of Understanding Internal Controls

The purpose of this submodel is to provide an understanding of the control environment and accounting system sufficient to set up the audit plan of financial statements ([1] [3] [15]. They have to be concerned with the controls regarding the reliability of financial reporting to comply with the second GAAS fieldwork, the SAS 78 [24], the ISA 330, the ISA 400, COSO 2013, and Sarbanes Oxley act [8] [17] [23]. The SAS 78 and ISA 400 require the auditor to obtain an understanding of the internal controls for every audit. In obtaining an understanding of internal controls, the auditor should consider two issues; the design of controls and their placement in operation [1]. Auditors can use five procedures to evaluate the design of controls and placement in the operation: (1) updating and evaluating an auditor’s previous experience with the company, (2) making inquiries of the auditee personnel, (3) reading an auditee’s policy and systems manuals, (4) examining documents and records, and (5) observing the company activities and operations [1] [29]. The transaction walk-through can combine observation, documentation, and inquiry. The auditor selects a representative sample of documents for the initiation of a transaction type and traces
them through the entire accounting process in the transaction walk-through [1] [11]. Figure 3 illustrates the PF of understanding internal controls.

![Flowchart](image)

Figure 3: Understanding internal control

3.3 The Management Integrity Submodel

The purpose of this submodel is to contribute to assess whether the financial statements are auditable. For example, in figure 4, the management integrity is affected by many factors. Some factors indicate a lack of management integrity, including the presence of one or a few individuals dominating management of the enterprise, improper accounting system, improper internal controls, false earnings, poor reputation, taking unusual risks, considerable turnover in senior positions, poor relationships with external auditors, and/or problems with customers, stockholders, or employees. If management integrity is questionable, false representations cause the auditor to rely on unreliable evidence. The management integrity is classified as a factor of business risk which affects the control risk [21]. Figure 4 illustrates the PF of investigating the management integrity.
3.4 The Submodel of Examining Documents and Records

The purpose of this submodel is to contribute to assess the adequacy of documents and records to help auditors assess whether the financial statements are auditable, if the accounting records (source of the audit evidence) are unreliable and/or inadequate, the audit evidence may not be accessible. When the auditor concludes that the financial statements are not auditable, the engagement is withdrawn or a disclaimer of opinion is issued [1] as illustrated in figure 2.

3.5 The Submodel of Control Environment

The purpose of this submodel is to evaluate control environment (management attitude). This evaluation is essential for the preliminary assessment of the level of control risk [8] [16]. Control environment consists of actions, policies, and procedures that affect management attitudes with respect to internal controls. The auditor should understand the control
environment to assess the management’s attitude and awareness regarding the controls importance [7] [17] [19] [27]. If management gives less attention to internal controls, the management’s control objectives will not be effectively achieved [1], the control procedures may be unreliable and the control risk should be at the maximum. Figure 5 illustrates the PF of control environment. The auditor can use five procedures to understand and assess control environment in the organization: (1) organization’s integrity and ethical values, (2) board of director’s independence, (3) responsibilities and authorities throw organizational structure, (4) competent individuals (5) accountability [1] [13] [21] [22].

![Control environment evaluation diagram](image)

Figure 5: Control environment evaluation

3.6 The Submodel of Risk Assessment

The purpose of this submodel is to illustrate the steps of risk assessment and how this process affects the assessment of control risk. In designing and operating internal controls to minimize errors and fraud, management identifies and analyses of risks related to the preparation of financial statements in accordance with related accounting standards. Once management identifies risks, it assesses the significance of those risks and its likelihood of occurring and develops actions needed (manage risk) to reduce the risks to an acceptable level [1] [10] [22]. On the other side, the auditors assess risks to decide the evidence needed in the audit. Risk assessment requires management to consider the impact of possible
changes in its business and external environment that may render internal control ineffective [8]. The auditors’ assessment of the risk consists of three stages [30]: (1) Risk identification; the auditor estimates the expected risks in financial statements, based on his understanding of the company, its industry and business processes. (2) Risk analysis; the auditor analyzes and assesses how the risks identified might affect the financial statements. (3) Auditor response; the auditor decides how to conduct the audit and obtain a high level of assurance that material misstatements in financial statements will be detected. Figure 6 illustrates the PF of risk assessment.

3.7 The Submodel of Control Procedures
The purpose of this submodel is to test the effectiveness of the five types of control activities and how this evaluation affects the assessment of control risk. Control activities are the policies and procedures that help ensure that necessary actions are taken to address risks to the achievement of the organization’s objectives [1]: [8]. As shown in figure 6, control activities include adequate segregation of duties, proper authorisation of transactions and activities, adequate documents and records, safeguarding controls, and independent checks on performance [1] [5] [6] [10]. Figure 7 illustrates the PF of control procedures in more details.

3.8 The Submodel of Information and Communications

©copyright by Mohamed A. Wahdan
The purpose of this submodel is to evaluate the effectiveness of the accounting information and communication system in initiating, recording, processing, and reporting the organization’s transactions and in maintaining accountability for the related assets as well as how this evaluation affects the assessment of control risk. The accounting information and communication system has several subcomponents (classes of transactions) and must satisfy all of the six transaction-related audit objectives (occurrence, completeness, accuracy, posting and summarization, classification, and timing) for each class of transactions [1]. Information is necessary for an organization to carry out internal control responsibilities to support the achievement of its objectives [8]. So management should have relevant and quality information to support the functioning of other internal control. Communication occurs both internally and externally and provides the organization with the information needed to carry out day-to-day internal control activities. The auditor can use three procedures to evaluate of information and communication: (1) relevant and quality information (2) internally communicates information (3) communicates with external parties, in particular external auditors. Figure 8 illustrates the PF of information and communications.

3.9 The Submodel of Walk-through of Significant Accounts

The purpose of this submodel is to evaluate the results of the tests of significant accounts and to test whether the results of investigating the significant accounts support the low assessment of control risk [1] [11]. Significant accounts include transactions with related parties, high amount transactions, transactions affected by judgements (subjectivity), suspense accounts and changed accounts during the current period [32]. Figure 9 illustrates the PF of walk-through of significant accounts.
Was there proper authorization of transactions?

Was there separation of the custody of assets from accounting?

Was there separation of authorization of transactions from the custody of related assets?

Was there separation of operational responsibility from record-keeping responsibility?

Was there separation of IT duties from the key users duties?

Was there sequential and pre-numbering for documents?

Was there timely preparation of documents?

Was there proper records-keeping?

Were there controls on data entry and recording?

Was there safeguarding of assets and records and Data?

Were there controls of access?

Were there effective supervision controls by internal auditors or audit committee?

Did a lack of control have so material effect on the internal control effectiveness as a whole?

Investigation of controls procedures supports the low level of CR

Investigation of controls procedures does not support the low level of CR

Figure 7: Investigation of control procedures
3.10 The Submodel of Tests of Controls

The purpose of this submodel is to evaluate whether the internal controls are designed and operated as contemplated in the preliminary assessment of control risk [1] and to test whether the results of tests of controls support the preliminary assessment of control risk [1]. Tests of controls are procedures performed to attain audit evidence regarding the appropriateness of (1) the design and (2) the effective operation of the accounting and the internal control
systems [17]. The auditor should obtain audit evidence through tests of controls to support any assessment of control risk below the maximum. The lower the assessment of control risk, the more support the auditor should obtain that internal controls are suitably designed and effectively operated. Figure 10 illustrates the PF of tests of controls.

![Flowchart of Tests of Controls]

Figure 10: Tests of controls

3.11 The Monitoring Submodel
The purpose of this submodel is to evaluate the monitoring activities and how they can affect the assessment of control risk [1]. Monitoring activities deal with ongoing or periodic assessment of the quality of internal control by management to determine that controls are operated as intended and that they are modified as appropriate for changes in conditions [1] [12]. Ongoing assessment (built into business processes) provides timely information. Period assessment will vary in scope and frequency depending on assessment of risks, effectiveness of ongoing assessment, and other management considerations. Findings are evaluated and deficiencies are communicated to the board of directors [8]. Figure 11 illustrates the PF of monitoring activities.
4. CLASSROOM APPLICATION

In this section the research question no.2 will be answered. An experimental setting was as follows. PFs were used in the second level auditing course "Advanced Auditing" at one state university (Menofia University) in Egypt (a sample of 64 students participated in the experiment). The topic of the assessment of control risk was covered in the auditing class using textbook, and then using PFs. The students were randomly divided into two groups. One group was provided with PFs, the other was not. Both groups had accessed to lecture notes and textbook materials related to the assessment of control risk.

Ten auditing test cases were designed in cooperation with a group of 34 auditors within seventeen audit firms in Egypt. The auditors also provided the guidelines answers of the ten auditing test cases. The assignment of control risk was distributed to all 64 students. The group with PFs (32 students) solved the ten test cases using lecture notes and textbook materials as well as PFs, while the other group (32 students) solved the cases using lecture notes and textbook materials only.

Table 1 provides the results of 64 students from Menofia University. The 32 Menofia students who did not use PFs faced 320 (32 * 10) test cases; they solved 259 cases correctly resulting in 81%, while the students who used PFs solved 304 cases out of 320 cases correctly, which is represented by 95%. Based on the observation and the judgments of the ten auditing test cases, it may be concluded that the group who used PFs performed better than the other group (see table 1). It is observed that the students who used PFs made fewer
IMPACT OF A PRACTICAL FLOWCHARTS APPROACH ON EDUCATING THE CONTROL RISK ASSESSMENT

errors in the assessment of control risk, and were faster in finalizing the assignment than the other group who did not use PFs. Furthermore, it is remarked that the students’ knowledge in the auditing class was improved as we experienced from a discussion afterwards (see below). Using PFs gives the students a hand-on experience dealing with the assessment of control risk. Moreover, some professors provide with some feedback information regarding PFs.

| Table 1: Impact of PFs on Students’ Learning Performance - Menofia University |
|-----------------------------|-------------------------------|-----------------------------|
| | Students who did not use PFs |
| | (% Correct) N = 32 | Students who used PFs |
| | 81% | 95% |
| The Assignment (10 auditing test cases) | | |

To support the statements above some students and professors provide some feedbacks.

Professor 1: "The logic of the flowcharts for assessing the control risk is easy to understand and follow. They are saving time to teach students how to assess the control risk”.

Professor 2: "Flowcharts guide students to the required procedures to assess the control risk in accordance with auditing standards and COSO requirements”.

Professor 3: “Flowcharts are useful in practice as a tool for training students and novice auditors on how to assess the control risk”.

Student 1: "PFs are excellent flowcharts. They enable us to understand which level of the control risk should be assessed when the auditor faces different problems and cases during performing his work (audit). It is the first time that I fully understand auditing in general and the assessment of control risk in particular”.

Student 2: "From the first impression, I consider these flowcharts as complex flowcharts, however after I give them my intention and concentration I found that they are high techniques to understand and remember the assessment of control risk ”.

Student 3: "From my point of view, these flowcharts are very important. They help us to understand the topic of assessment of control risk. If we want to improve or have more benefits from these flowcharts, we should: (1) apply flowcharts in practical cases, (2) connect the flowcharts with CPA firms’ studies, and (3) use these flowcharts in all of our auditing studies”.

5. CONCLUSION AND FUTURE RESEARCH

5.1 Conclusion and Contribution

This paper aimed at developing and testing the PFs that help educating students in the
assessment of control risk. Two main research questions examined in this paper are: (1) how can the PFs be developed to help students and novice auditors assess the control risk? and (2) to what extent is using PFs effective as a tool to improve the education of assessing the control risk?. The knowledge is acquired (a) from the literature and (b) from experienced auditors. The primary contribution of this paper is that the researcher successfully designed a conceptual model consisting of eleven submodels and ten PFs.

The conceptual model provides a vital contribution to the literature, and the application of it constitutes a new educating method of auditing. As an aside the researcher would like to mention that from the validation process by the respondents and interviewees as well as from an empirical test, it may be concluded that usage of PFs is an effective tool to improve the audit education. PFs developed in this paper are logical and easy to follow. Finally, the researcher believes that organizing the training sessions by using the PFs is a good way to prepare students for a successful career in auditing. Hence it may be concluded that PFs are beneficial to the students; the students who used PFs outperformed students who did not use them. Moreover, the PFs made the learning process of the assessment of control risk more effective (see the students and professors’ feedbacks). The conceptual model of PFs provides top management and external auditors with procedures used in the evaluation of the overall effectiveness of the entity’s system of internal control. These practical flowcharts enable students to gain experiential knowledge of the world he or she will participate in and face upon graduation, as well as to have real world experiences in short time.

5.2 Limitations and Future Research
This study is subjected to some limitations regarding generalizability of results since the sample size of students is small and from one state university. In addition, designing test cases may be subjective. Future research should deal with the impact of PFs on the learning process of novice auditors on the cases in a real auditing setting. Furthermore, the PFs approach could be applied in the other classroom settings to generalise the results. Moreover, PFs may be used as a basis for designing software for assessing the control risk.

References
IMPACT OF A PRACTICAL FLOWCHARTS APPROACH ON EDUCATING THE CONTROL RISK ASSESSMENT

©copyright by Mohamed A. Wahdan

